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The midrib is the major stiffening element of maize leaves. Its anatomical study reveals

a complex cross-sectional shape and a composite constitutive material. A mechanical model

is proposed, based on composite beam theory, to account for the bending mechanical

behaviour of a beam element with an heterogeneous cross-section of any transverse shape.

The inputs into the model are the outlines of the various material surfaces within the cross-

section, and their corresponding Young’s moduli. The predicted outputs are tested against

experimental data from an in vivo flexural test. The model prediction gives a good first order

approximation of the experimental data. The maize midrib can thus be considered as

a sandwich beam. The model can also be applied more generally to any plant axis, once

given the outlines and the rheologies of its constitutive material.
1. Introduction
This paper is part of a long-term research effort di-
rected to understanding the mechanics and forms of
grass leaves. Understanding the mechanics of such
leaves can be of interest both for agronomists and for
mechanical engineers, as leaves are a natural occur-
rence of composite structures [1—4]. In a previous
study [5], an in vivo mechanical analysis of the flexural
behaviour of the maize leaf allowed us to establish
that the midrib (i) is morphologically a very slender
structure (aspect ratio'100) (ii) is the major stiff-
ening element of the fully turgid maize leaf, and
(iii) displays in most cases an elastic and locally linear
behaviour. Such results lead naturally to an attempt to
model the midrib within the framework of beam
theory. In this paper, a composite beam model is thus
proposed, which is a generalization of the previous
works by Gibson et al. [2] and by Niklas [4]. It is
shown that the mechanical behaviour of the midrib
can be accounted for by the model, to at least a first
approximation.

2. Geometry and micro-structure
(anatomy) of the midrib
cross-section

Fig. 1a shows the general morphology of the leaf in
maize (Zea mays L.), and Fig. 1b details the outlines of
three successive cross-sections along the maize midrib.
The overall geometry of the cross-section is usually, at
the base of the midrib, a thick U (or V) and then goes
to a more rounded shape toward the tip of the leaf.

However, both the longitudinal gradients of changes
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of cross-sectional shape and of tapering are small
(+7]10~3 for the gradient of the mean radius of
cross-sectional area). Note finally that the midrib dis-
plays most of the time an approximate mirror sym-
metry apart from the vertical plane.

The internal micro-structure of the midrib is shown
in Fig. 2a. It is obvious that at least two different
materials can be distinguished. The core of the midrib
is made of a foam-like cellular tissue of very low
density. This tissue is called in botany a parenchyma.
It has very large cells and extremely thin cell walls.
The outer ‘‘rind’’ is made of a much denser material.
A more magnified view using staining (safranin#blue
astra) and polarized microscopy (Fig. 2b) shows that
the rind itself is heterogeneous, being made of vascular
bundles and of a very dense tissue with thick cell
walls, called the sclerenchyma. However, both the
bundles and the sclerenchyma are denser than the
central parenchyma and they have a rather similar
chemical composition of the cell wall (mainly sclerified
tissues).

3. Mechanical model of the bending
stiffness and suppleness

Models of leaves in which they are considered as
sandwich beams in bending have already been pro-
posed [2, 4]. However, such models are based on
simple idealizations of the cross-sectional geometry
(rectangular or circular cross-section), with a level of
symmetry high enough to fix the position of the neu-
tral fibre. On the other hand, unfortunately the maize

midrib does not display a geometry that is amenable
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Figure 1 General morphology of the midrib of the maize leaf.
(a) the midrib within the leaf (horizontal bar"approx. 10 cm) and
(b) shadow-graphs of three successive cross-sections of the midrib
(their initial situations within the midrib are shown in a) (vertical
bars"5 mm).

Figure 2 The anatomical microstructure of the midrib cross-sec-
tion: (a) negative macrophotograph of the whole cross-section
(b) more detailed view using safranin plus astra blue staining and
polarized microscopy.

to an idealization with simple shapes (see Fig. 1).
Moreover it has only (at best) a bilateral symmetry, so
that the position of the neutral fibre (at least within
the plane of symmetry) is an unknown quantity, which
has to be determined by the mechanical model. The
model developed in the following sections deals with
the bending behaviour of an element of a beam with
an heterogeneous cross-section, whatever the cross-

sectional shape. The various materials within the
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Figure 3 The parameterization of the longitudinal strain field ac-
cording to the Navier—Bernouilli assumption: S and S@ are two
successive cross-sections dx apart, d)

Z
rotation angle of the cross-

section S@, G centroid point of the cross-section, G* neutral point of
the cross-section.

cross-section are assumed to be distributed within
distinct surfaces, defined by their outlines. It is thus
a generalization of the previous models (still staying,
however, within the framework of the theory of com-
posite beams in pure bending [6] as no attempt is
made to take into account shear, because of the highly
slender nature of the midrib).

Consider a beam whose cross-section S includes n
distinct material surfaces D

*
( i3M1,2, nN), defined by

their outlines and by the longitudinal Young’s moduli
of their material. The beam is assumed to be initially
only slightly curved within a plane. The cross-section
S is loaded by a bending moment MK f (assump-
tion of pure bending); the reference frame on S is
G X½Z(G"centre of area of the cross-section,
X"tangent to the central line, ½"vertical). Using
the classical kinematical assumption of the beam
theory, which states that the cross-section remains
plane and perpendicular to the directing curve of the
beam (Navier—Bernoulli’s assumption), the longitudi-
nal strain (along X ) can be set as (see Fig. 3)

e
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(s)(y, z)"e
0
(s)!A
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z

dx
(s)yB#A

d)
Y

dx
(s)zB

(1)

where e
99

is the longitudinal strain, s is the curvilinear
abscissa of the cross-section S along the central line of
the beam, e

0
is the longitudinal strain on the central

line, d)
z
/dx is the lineic rotation angle of the cross-

section around the Z axis and d)
Y
/dx is the lineic

rotation angle of the cross-section around the ½ axis.
For the sake of clarity, Equation 1 can be modified

into:
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where dC
IJ

is the change in curvature of the projection
of the central line of the beam within the plane IJ.

The constitutive law of any material i is taken as

linear elastic. Considering only the components along



X, it can be shown that:

r*
XX

"E*
L
e
XX

(3)

where E *
L

is the apparent Young’s modulus of the
material i and r*

XX
is the longitudinal stress in the

material i.
Note that it is assumed that the constitutive mater-

ials if anisotropic, have one of their major directions of
anisotropy concurrent with X, an assumption which
seems to be realistic in the maize midrib (if not the
case, the application of a bending moment would
induce shear, resulting for example in a coupling be-
tween bending and torsion). Moreover, we choose to
neglect the hardening of the apparent longitudinal
stiffness due to putative non-compatibility of the
transverse strains generated by Poisson’s effects. As a
matter of fact, these effects are usually of second
order, notably in the case of anisotropic beams
with the longitudinal direction being the stiffest
[6, 7], as is the case in the maize midrib. Finally it
should be noted that Equations 2 and 3 lead to a dis-
continuous field of longitudinal stress r

XX
(continu-

ous by pieces).
The relations between the normal force N, the

bending moments M
Y
, M

Z
and the longitudinal stress

can be written as
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Substituting for r
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into Equations 4—6 from the con-
stitutive law (Equation 3), and then substituting for
e
XX

from Equation 2 yields:
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where A
*
is the area of the material surface D

*
, y
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is

the ½-ordinate of the centre of area of the material
surface D

*
, z

G*
is the Z-ordinate of the centre of area of

the material surface D
*
, I
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is the second moment of

area relative to the axis G½, I
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is the second moment
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is the area product,
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Note that Equation 13 represents the behaviour law
of the beam element loaded by a combined tensile and
bending load.

Introducing the hypothesis of pure bending leads to
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let the point G*A
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z
G* B

defined as:
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(i.e., as G* is the barycentre of the centres of area of all
the material surfaces in the cross-section, weighted by
their longitudinal tensile stiffness)

Then Equation 14 can be modified as:
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Note that Equation (16) means that the straining
of the central line of the beam is only a consequence
of the rotation of the cross-section around G* . Thus
G* is on the elastic neutral fibre, whose displacement
from the central line of the beam is a function of the
tensile stiffness and of the position of the materials
within the cross-section.

Substituting for e
0

in Equation 13 from Equa-
tion 16 yields:
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It is better to translate the reference frame in G*; after
a little calculation (which is detailed in Appendix 2)
it yields:

G
M

Y
"!dC

XYA
n
+
i/1

(E *
L
I*
YZ

)B#dC
XZA

/
+
i/1

(E*
L
I**
Y

)B
M

Z
"dC

XYA
n
+
i/1

(E*
L
I**
Z

)B!dC
XZA

n
+
i/1

(E*
L
I**
YZ

)B
(18)

let then K*
Y
"

n
+
i/1

E *
L
I **
Y

, K*
Z
"

n
+
i/1

E *
L
I **
Z

, K*
YZ

"

n
+
i/1

E*
L
I **
YZ

and substitute for them into Equation 18, yielding

A
M

Y
M

Z
B"A

K*
Y

!K*
XY

!K*
XY

K*
Z
B A

dC
XZ

dC
XY
B (19)

The 2nd order symmetric matrix K
.,/

represents the
tensor of bending rigidity (associated with the beam

element), in the reference frame G*X½Z. This may be
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a matter of surprise as the bending moment M was
initially defined on the axes GZ, G½ and the change in
curvature dC relative to the centre line of the beam.
However M is unchanged by the translation from G to
G* as N"0. dC can also be considered as unchanged,
provided that the initial curvature of the beam is small
(i.e., the radius of curvature is much greater than the
thickness of the midrib, which is the case in the maize
midrib [5]). Note also that there is a coupling of
the bendings. For example if the only loading is
M

Z
(M

Y
"0) the bending plane runs out of the vertical

(skew bending).
It is then interesting to diagonalize the matrix

K
.,/

in order to find the reference frame called the
‘‘principal axes of bending rigidity’’, in which there is
no more coupling of the bendings. Let us define it in
terms of G*, ½

1
and Z

1
.
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and the eigenvectors (which define the directions of
the principal axes ½
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1

and Z*
1

are chosen so that they make the direct
reference frame so that S½o

1
·½o T is maximum. From

the principal axes, it is also possible to calculate the
polar ‘‘skew angle’’ u* between G*½ and G*½

1
, given

that:
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The principal axes of rigidity being defined, the matrix
in (G*, ½

1
, Z

1
) of the bending rigidity tensor is:
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Lastly, the matrix can be inverted, to obtain the prin-
cipal matrix of the bending suppleness tensor:
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These calculations have been coded in Turbo-Pascal
on a personal computer, giving raise to a software
package called RIGFLEX. The various moments of
area are computed numerically from the outlines of
the material surfaces within the cross-section, using
the trapezia method. The inputs into the model are
thus the outlines of all the material surfaces within the
cross-section, and the longitudinal Young’s moduli of
the various materials. The outputs are all the moment
of area, the matrices of bending rigidity in the usual
axes and in the major axes, the matrix of suppleness,
and the skew angle u*. A graphical display of the
composite cross-section in the usual axes (for a check-
ing of the inputs) and in the principal axes of rigidity is
also implemented.

4. Qualification of the model inputs
4.1. Cross-sectional morphometrics
The plant material has been described by Moulia
et al. [5] and the midribs used are those previously
tested with the in vivo bending test [5]. Freehand
anatomical transverses sections were done on fresh
material, without any special treatment. The curvi-
linear abscissa of each section along the midrib was
recorded. Ten midribs were studied, with a mean of 13
sections per midrib (in order to describe the tapering
and the changes in cross-sectional shape of the mid-
rib). The leaves were of two ranks along the stem (rank
8 and 10). In order to minimize the changes in volume
due to cell disruption and to desiccation, the cuts were
made rather thick (+1 mm) and immediately placed
in a drop of pure water, on a graduated glass lamella.
A negative macrophotograph (similar to the one
shown Fig. 2a) was obtained by mounting the glass
lamella with the specimen on a photographic enlarger.
Care was taken to place the cross-section in the same
orientation within the ½Z plane as observed in situ
within the midrib. A magnified negative photograph
was then printed by transmission on a photosensitive
paper that was immediately developed. The difference
in optical density from the inner core and the outer
ring is related to density differences and also to the
chlorophyll that is concentrated in some cells of the
outer ring. More detailed anatomical studies using
several staining techniques (safranin plus astra blue,
chlorhydric phloroglucinol and Maüle’s reactive) re-
vealed that the transmission photograph induces an
homogenization of the outer rind but that its outlines
were generally correct. The outlines of the material
areas were then digitized from the photograph as set
of points using a 2D digitizing tablet (Summasketch
Pro, Summagraphics Corp., Seymour, CO, USA,
0.01 mm accuracy). The accuracy of the morphomet-

rics measurements can be split into two effects: (i) the
accuracy on the measurement of the scale magnifica-
tion among photographs and (i) the accuracy on the
digitizing of the outlines. The coefficient of variation
on the first type of error is 0.3% (n"30). For the
second type of error, the coefficient of variation is 1%
on the estimate of the cross-sectional area and less
than 3.5% for the estimate of the principal bending
rigidity (see section 2 for details on the choice of the
rheological constants).

4.2. Longitudinal Young’s moduli
No attempt has been made directly to measure the
Young’s moduli of the parenchyma and of the rind
tissue(s). We decided, as a first approach, to rely on
the literature data. Our goal is then to test whether
a composite model taking into account the longitudi-
nal changes in cross-sectional geometry (including the
geometry of the various material domains) is sufficient
to explain the bending stiffness. As a matter of fact,
previous experimental studies on plant slender organs
indicate that changes in geometry along the plant axis
are much more important for the bending rigidity
than changes in the ‘‘homogenized equivalent Young
modulus’’ of the cross-section. Moreover, no obvious
anatomical change is observed along the midrib, and
our composite modelling takes into account most of
the changes in the ‘‘homogenized equivalent Young
modulus’’ of the cross-section, by including the effects
of possible changes in the volumetric fractions of core
and rind tissues.

Tables I and II summarize the literature data, con-
cerning the parenchyma and the sclerified tissues. The
order of magnitude of the Young’s moduli is around
102 MPa for the leaf parenchyma. For the sclerified
tissues it ranges from 102 MPa for vascular bundles to
104 MPa for sclerenchyma, being close to 103 MPa
for leaf heterogeneous sclerified tissues. Note that in
all cases the variability of the measurements is high.
From these results, we have decided to distinguish
only two materials within the cross-section (paren-
chymatous core and sclerified rind) and to value their
Young’s moduli respectively as E

#
"102 MPa and

E
3
"103 MPa. It should be also noted that retaining

these values to test the model against experimental
data adds two restrictive and non-mechanical hy-
potheses to the model. It is assumed that the constitu-
tive law of the parenchyma and sclerified tissues do
not change (i) across a given section and (ii) along the
midrib. When these two assumptions are added to our
model of the mechanical behaviour of the composite
beam element we will speak, to be short, of the simpli-
fied model.

5. Comparison between the simplified
model and the experimental data

5.1. Skew angle of the cross-section
Before testing the results of the model against the
experimental data, it is necessary to recall that the
experimental data were obtained under the assump-
tion of pure plane bending. It is thus interesting to

check whether the results from the model are in
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TA

Tis ater E
L

(MPa) Notes References
atus ($std%.)

Scl et 103 à 104 (30 specimens) [8]
(sc
# The major source of
# variance is the radial
she position within the stem

Scl et 2.3 103 [4]
(sc ($22%)
#

Scl et 3.5 103 [2]
(sc
#

Scl et 3.0 103 (7 specimens) [9]
($63%)

Scl et 7.4 103 (8 specimens) [9]
($98%)

Scl et 7.5 103 (9 specimens) [9]
($48%)

Scl et 3.6 103 (7 specimens) [9]
($59%)

Scl et 2.1 103 (6 specimens) [9]
($46%)

Scl et 2.3 104 (7 specimens) [1]
($41%)

Scl ry 0.5 à 3.5 104 [10]

Va et 8.4 102 (5 specimens) [1]
bu ($55%)

* M
** f each tissue was then calculated using their areas and their density.

2
7
7
6

BLE I Longitudinal Young’s moduli of sclerified tissues from herbaceous plants

sue Organ Type test Size of the Strain W
Species specimen rate st

(mm)

erified tissues Stem Tensile 20]5]1 0.1 mn~1 W
lerenchyma Zea mays L.
vascular bundles
parenchymatous
ath)

erified tissues Leaf MFRS* W
lérenchyma Juncus effusus L.
chlorenchyma)

erified tissues Leaf ‘‘Tensile’’** 16]48 W
lérenchyma# Iris sp. ]0.6 to 3
vascular bundles

erenchyma Leaf Tensile (50 mm. W
Holcus lanatus mn~1)

erenchyma Leaf Tensile (50 mm. W
Dactylis glomerata mn~1)

erenchyma Leaf Tensile (50 mm. W
Bromis hordescens mn~1)

erenchyma Leaf Tensile (50 mm. W
Deschampsia mn~1)
caespitosa

erenchyma Leaf Tensile (50 mm. W
Stipa gigantea mn~1)

erenchyma Leaf Tensile (50 mm. W
¸olium perenne L. mn~1)

erenchyma Leaf d
? ?

scular Leaf Tensile (50 mm. W
ndles ¸olium perenne L. mn~1)

FRS"dynamic test (Multiple resonance frequency spectra see [11]).
In this work, the equivalent tensile Young’s moduli E

%2
of the whole cross section was measured, and the Young’s moduli o



TABLE II Young’s moduli of leaf parenchyma

Tissue Organ Type test Size of the Strain Water status E
L

(MPa) Notes References
Species specimens rate (w"water ($std%.)

(mm) content)

Aerenchyma Leaf MFRS* wet 3 102 [4]
Juncus effusus L. (soaked in ($33%)

pure water)

Parenchyma Leaf ‘‘Tensile’’** 16]48 wet 2.1 102 [2]
Iris sp. ]0.6 à3 (w+600%)

* MFRS"dynamic test (Multiple resonance frequency spectra see [11]).

** In this work, the equivalent tensile Young’s moduli E

%2
of the whole cross section was measured, and the Young’s moduli of each tissue was
then calculated using their areas and their density.

Figure 4 Calculated skew angles u* for all the cross-sections (each
point represents a cross-section, the lines are drawn only to identify
the sets of cross-sections that are used latter to test the predictive
power of the model) (d) rank 8, (s) rank 10, (#- - -#) leaf e20, rank
8, (] - - -]) leaf e22, rank 8, (*— — *) leaf f22, rank 10.

TABLE III Mean skew angles of the cross sections sorted by leaf
rank

Sample Mean skew angle Prob'DT D
(Rad)$stdev (Hyp mean"0)

Midribs rank 8 #2.5 10~2 ($0.146) 0.24 NS
Midribs rank 10 #1.5 10~2 ($0.120) 0.25 NS

accordance with this assumption. Fig. 4 represents
the skew angles u* obtained by running the model on
the morphometrical data from the cross-sections.
The skew angles are very small and their mean are
statistically not significantly different from zero (see
Table III). These results quantitatively corroborate
the previous observation of the bilateral symmetry of
the midrib, and thus, the assumption of plane bending.

5.2. Validity of the outputs of the simplified
model

In our previous experimental work [5], a considerable
number of in vivo tests had to be discarded to obtain
a good accuracy in the computation of changes in
the curvature. From the 10 midribs described and

modelled in the present work, only 3 provided reliable
experimental data. However, as both the measured
and the modelled supplenesses are local variables
(along the midrib), this testing sample includes 23
anatomical sections (on which the model was run)
and 126 experimentally measured points. Fig. 5(a—c)
show the compared results obtained for the three
leaves. The simplified model globally correctly ac-
counts for the orders of magnitudes of the suppleness
However, at least in two midribs (b, c), the changes
in suppleness along the midrib are not correctly
simulated. The model does not account for a rather
sharp change in the slopes at curvilinear abscissa 200
and 300 mm. Several possible reasons can be put for-
ward to explain such a discrepancy. The first reason
may be that the assumption of homogeneity of the
materials along the midrib is not correct in all the
leaves. This could be for two reasons. The first one is
some intrinsic changes in the stiffness of the materials,
an hypothesis which can be tested only by investiga-
ting the rheologies of the constitutive materials. A
second possibility is that some longitudinal changes
occur in the fraction of vascular bundles within the
rind. As these bundles are less dense than the scleren-
chyma, this may induce changes in the rigidity of
the composite beam. We have tested this hypothesis
by again running the model considering 3 material
areas (parenchyma, ‘‘sclerenchymal rind’’ and vascular
bundles). Moreover, to emphasise the effect, we have
set the Young’s modulus of the bundles as equal to
that of the parenchyma (102 MPa). The results are
shown in Fig. 5(a and b) (that is on both a leaf with,
and a leaf without, an unexplained change in slopes).
It is clear that the change in slope cannot be explained
by a bundle fraction effect.

The other reason which could induce the discrepan-
cies between the model and the experiment along the
midrib concerns the mechanical model itself. It may be
first thought that it may not be correct to assume that
the effect of the transverse shearing force can be ne-
glected, even in such a slender structure. Owing to the
distribution of shear stress within the cross-section,
the shearing deflections should be increased in
core—rind beams with a large core having a low shear
modulus [12]. However, this cannot explain the
observed differences. The shear deformations, if im-
portant, should lead to an over-estimation of the
‘‘bending suppleness’’ in the experiments (as they were
analysed in pure bending [5]). Moreover, since (i) the

bending moment is almost a linear function of the
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Figure 5 Experimental and simulated bending suppleness for three
midribs (a) leaf e20, rank 8, (b) leaf e22, rank 8, (c) leaf f22, rank
10.: (#) measured suppleness, (*——*) simplified core-rind model
(E "102 MPa, E "103 MPa), ( – – ) simplified core-bundles-
# 3 * *
sclerenchyma model (E

#
"E

"
"102 MPa, E

S
"103 MPa).

.
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curvilinear abscissa [5] and hence the transverse shear
force is constant, and (ii) the area of the cross-section
decreases linearly while the relative area of constitu-
tive tissues remains constant [13], it follows that the
effect of shearing can only explain a monotonically
increasing difference between the model and the so
called measured suppleness. This is not the case in
this work.

The last possible reason for differences between
experiments and the model is related to structural
effects. A common characteristic of the midribs
b and c (Fig. 5) is that their longitudinal initial habit
showed a zone with sharper curvature which is located
at the point where the change in slopes of the supple-
ness happens. It is possible that a structural coupling
of the longitudinal and transverse curvatures occurs
on these zones. leading to a decrease in the local
apparent longitudinal bending rigidity [17]. Model-
ling such a behaviour, however, would require the
abandonment of beam theory and the development of
a 3D model.

6. Conclusion
The presented results show that the in vivo bending
behaviour of the maize midrib can be accounted for
by a composite beam model, at least to a first order
approximation. This corroborates previous reports in
the literature [2, 4, 12] stating that many herbaceous
plant axes behave as sandwich beams. It is interesting
to observe that 95% of the bending stiffness is pro-
vided by the sclerified rind, which represents less than
40% of the cross-sectional area of the beam. These
results illustrate the interest in considering natural
structures with the eyes of a mechanical engineer.
A next step would be to compare different designs, in
terms of cross-sectional shapes, and material distribu-
tion, and to investigate their different mechanical be-
haviour, their functional advantages and drawbacks.
Our model should be highly suitable for such a study,
as it is not only related to the cross-sectional shapes
that are similar to those used in artificial designs. Note
that it could rather easily be extended to the calcu-
lation of the torsional rigidity, which seems to also be
of ecological significance [9, 10]. Another point which
is interesting to elucidate is the behaviour of plant
organs submitted to water depletion as current obser-
vation together with rheological data indicates changes
in the mechanical behaviour [12, 13, 16]. This latter
subsect is investigated in another publication [17].

Acknowledgements
We acknowledge Mr Arthaud, a plant anatomist at
the E.N.I.T.A Bordeaux, for the original suggestion
of using a photographic enlarger to obtain negative
transmission views, and for the use of its anatomy
laboratory. We also thank Olivia Delavaud, LMGC
Montpellier and B. Chanson, LRBB, for the micro-
scopic views using a polarizing microscope. We also
thank B. Chauvin for his very useful technical sup-
port. The present work forms part of the thesis of

B. Moulia, who received a grant from the Département
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Appendix 1 Definitions of the main
biological terms used

Midrib: a central, thickened and more or less ‘‘V
shaped’’ ridge (rib) within the leaf.
¹urgid: a plant organ is said to be turgid when the
hydrostatic pressure inside its living cells is positive.
Such pressure (called the turgor pressure) is explained
by the elastic reaction of the cell wall to volumetric
strains related to water flowing into the cell. Such
water flow is driven by osmotic differences between
the cell content and the surrounding solution, and it
stops when the turgor pressure equilibrates the osmo-
tic one. ‘‘Fully turgid’’ means that turgor pressure is
maximal.
Sclerified tissues: The cell wall of the cells of sclerified
tissues is thick and highly lignified. As a consequence,
the cells are no longer living (and thus have no internal
turgor pressure).
¸eaf rank: the number of the leaf within the sequence
of leaf emergence (the first leaf to emerge has rank one).

Appendix 2 Detail of the calculation of
the effect of moving the
reference frame to G*

Equation 17 relating the bending moments to the
curvatures of the central line is (in the reference frame
GX½Z)
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and that Equation 15 can be rewritten as:
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substituting Equation A3 into Equation A2 yields:
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Then, noting that : :
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Z
is the sec-

ond moment of area of the material surface i relatively
to the axis G*Z Equation A4 yields:
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By a similar calculation, it can be demonstrated that
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where : :
D*
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I
is the second moment

of area of the material surface i relatively to the axis
G*½, : :
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is the product

of area of the material surface i relatively to the axes
G*½, G*Z.

It is thus possible, from Equations A5—A7 to obtain
Equation 18
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